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~—«-»EFFEGT~OF—SONIC“ﬁOOM‘ON“BUIEDINGS“_“"_*
(SECOND REPORT: ELABORATION OF A METHOD FOR‘
CALCULATING THE DEFORMATION OF CONSTRUCTIONS)(l)

ABSTRACT. The acoustic;reéponse of various room
configurations in buildings to sonic booms is calculated.
Configurations studied include: single rooms having
openings in walls, penetration of booms through flexible

walls, two rooms coupled acoustically by openings, rooms
with window panes.

The purpose of the present study is to evaluate the deformation of

constructions which are sensitive to sonic boom. The deformation is

calculated for a ballistic detonation, and the characteristics of the

various facades of a building are assumed known.

-,

in interior partitions, ceilings, window panes, which are the most fragile

This study essentially is concerned with vibrations which are produced i
[
!

elements in new structures;‘:The-determination“of=these'vibrations was: | >

done using the classical theory of dynamic deformation of a plate.

theory is applicable in the case of homogeneous partitions and ceiiings if

there are no substantial internal prestresses. Also, it represents a good

This

approximation for the study of window panes, if these do not have dimensions:

which are too large.

. S
1

In order to evaluate the motions of all these elements, it is first

The

necessary to know the propagation of a sonic boom across a building.

boom can propagate through the air. It then penetrates through one

or

Numbers in the margin indicate pagination in the original foreign text.

B ( ) e e

Conventlon No. 69 34-412-00-480-75-01, December 1, 1970

+

(i

(2

N



several opéniﬁéérand propagates into the interior. The case of a room

haVing a rectangular opening is studied in the first part.

The sonic boom—can—also-be—transmitted through light Structural
elements (window panes, light partitions). In practice, the overall
structure does not have an effect. The transmission of these elements
depends on their motions and these two latter bﬁeﬁdﬁéna,have been studied
together in a second part. This takes into acg;;;; the possibilities of
coupling between fhe panel vibrations and the pressure which they radiatej
.as in the clase of a window with a cavity behind it, for which numerous

istudies have been made.

1.1 EQUATION OF DYNAMIC EQUILIBRIUM

1.1.1 Hypotheses

-- For an incident standing sinusoidal wave, the wavelength of which
is large with respect to the dimensions of the opening, the velocity field
in the plane of this opening can be studied in a simple way. In particular,
the approximation which consists of ‘assuming that this velocity is uniform
can be made. In the same way, if this wavelength is large with respect to
the dimensions of the room, the overpressure in it can be considered as
uniform, if there are no parasitic sources in the room or at its front, such
as walls carrying out vibrations at high frequencies. These hypotheses

lead to the classical theory of Helmholtz resonators.

As far as ballistic detonation is concerned, the energy is concentrated
primarily at frequencies whose associated?ﬁﬁ%ﬁ%ﬁﬁﬁiﬁﬂsatisfy the preceding
hypotheses, for conventional room dimensions. The velocity field in the
opening can therefore be studied in the way described above, to a good

degree of approximation. When the sonic boom passes through this opening,

it begins to undérgo diffraction|in the room. After an intermediate time ~

\n
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lnterval which is short with respect to the fundamental resonance period

(calculated with the Helmholtz resonator), s _during which the overpressure

—_———

field is not uniform and where the first reflections on the walls are

produced,

but small phase differences, contribute to the establishment of a uniform

the various—incident—and reflectéd waves, which have different j

overpressure. 1nthe room. This overpressure is uniform except for the

immediate V1c1n1ty of the opening where the velocity increase produces a

reduction in the vibration amplitude.’

in the room will be obtained by considering this overpressure to be unlform,

The varlatlon of the overpressure

except for the beginning of the process.

The difference between the forces applied to the air contained in the

opening by the external pressure pl\and the internal pressure Py is equal

to the sum of the momentum derivative of the air contained in the throat

and the viscosity forces (see Figure 1.1).

In general, we can assume that

the opening is not too small compared with the wavelengths considered, s

that these latter forces. can be neglected (see [3]1).

an air volume which satisfies the usual gas laws.

adiabatically, we have |

1.1.2 Pressure pi

J

in the room:

‘(rigid walls and non-absorbing walls)

o

It is assumed that the overpressure is uniform and the room acts like

‘§where:1»

-

.

P,

'zs_d_V_
vV

0

If the volume V changes !

s P, is the ambient pressure

s

1 ¢ is the velocity of sound,

p the specific mass of the air.

The derivative of the volume with respect to time dV/dt is given by

the velocity flux over the periphery of the room.

For practically rigid

3
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Figure 1.1.  Penetration of the sonic boom through an -opening. -- - 1
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'.. walls, fﬁié“flﬁxwis reduced to the velocity flux at the opeﬁiﬁg, from which:

d;— ¢t v, dS @)

with § - surface of the opening )

E u

9 velocity of a point on the internal side of the opening, oriented

from the exterior towards the interior. ;

1.1.3 Forcéprplied to the Internal Surface of théuOQening

Because the acoustic equations are linear, this force will be equal

to the sum: }
! 1°) of the pressure force p,

2°) and the force due to radiation of the air mass which is in motion
“in the opening. This radiated pressure decreases to zero rapidly when one
moves away from the opening. This radiation must result in a zero normal l

velocity along the walls.

If we know the expression for the radiation (see below), we obtain the
following form for this force (oriented positively from the interior towards

the exterior of the room):

v | dzz
JSP"'JS =. ‘.PLS + “L\[ gf.bds —{32 s_d{_zds

1.1.4 rMomentum Derivative in the Throat (thickness of the opening)\‘ ¥

+ —— =

In order to evaluate this quantity, we can hypothesize that the
acoustic perturbation will be propagated in the form of plane waves over

" the same streamline. In this case (see Figure 1.1)

(a5



. where:

-+ form:

Cawe e

| v (t) = F(’f-—z—;—h—/\ *G(t*%i)

P () £ v (t)- | z;h | [ F'(¢) +6,(t)],,,.

The imomentum derivative can be approximated by| -

el open] g s oot

[ salie o] s ] hss |
s L7 dt s o

of |1 dvdefec hJ dugs + bS5 dp
(’L “ at JZJ B# e ) gt e

© by eliminating the derivatives of u, of the second order.

1.1.5 Forces Exerted on the External Surface of the Opening

If the velocity radiation force at the input of the throat is of the



‘,‘.

we obtain, by superposition as befotre, a force equal to:

jﬁds j?eds o(J_JdS+ jdw ds

LE is the pressure (directed|from the exterior to the interior of the room)
which would prevail on the facade assumlng a closed opening (the velocity
in this case is zero at the opening level).

By replacing uy (t) by:

() = Uz,(t) +—-— dﬁ(

we obtain the following expression for the desired force:

jT,As # peds -] dngs s Izjooltzzcw
’-o(LSQ'_I; fa.ecz il

1.1.6 Equation of Equilibrium

This equation is written as:

t
Sh . h'S ) d%: h g‘j?_
*(“ﬂg: *'z‘;f) - Fﬁ? iYE



L.

1.1.7 Simplification of the Equilibrium Equation

First of all, i eral Sh
a) irst of all, in genel.*a we have 7 << 1 I

b) The equation obtained is a differential equation of the third
order in p,- The associated characteristic equation in terms of r is of

the form:

- 2KCr3 + 2LCr2 +1 = O

where K, C and L are positive.

The roots are of the form

r1 '
r2 = r + Jll
r = r - J-Q
3 o

with .
' V2LC
The relationships among the roots are wrltten as:

r, (r,+ﬂ.,>
e e r, +__{)_.+‘..2r,r4 =

;2Y; + 1 ‘ =

l.;

2

x

C
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The first relationship shows that T is positiveéjthe second shows that

rO is negative. The elimination of rl among these two latter relationships

results in:

This is as though the roots r, and ry were solutions of the equation:

arce? + ke L% 41 = o,}

which corresponds to the first term of the differential equation

eledy s wer . o]
BTl

¢) The solution of (2) is of the form:

Pio (’6) + Ae P-f- B é.r'ts'm Nty C’:F’ cé:ﬂt

Pio(t) is a particular solution,
A, B, C are three constants determined by three conditions.



coefficients B B

The solution rj] is not a physical one and corresponds to the way the

are determined (seé below) byrlimitediaévelopment.' In|

carrying out the development to a higher order.

It can be acknowledged that a particular solution of the differential

equation obtained in b) must also satisfy Equation (2).

obtain of necessity:

Assuming this particular solution as the solution pio(t), we therefore

A = 0, the overpressure must be zero after an infinite time.

In conclusion, we can substitute a second order differential

Equation

(3) for the differential Equation (2), which is more physical and must be

quite close to reality:

9_1/{3 o?-%—o( +(> __’E

F_’z"’ [2_’4— Cf

dp: 24 (5.4
0(z+o(+€h dt +T S j’fe

This' differential equation is identical to the one for a simple

. resonator made up of a mass and a spring.

The system consisting of the room and the opening therefore behaves

like a resonator, with the following eigenfrequency:

~and réétofiné'féafor Q=

# J\f(o@

n/SOi\S—\ls the logarithmic dec rement:

0

+d,+ph)

L
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1.2 DETERMINATION OF THE COEFFICIENTS INVOLVED IN THE RADIATION FROM THE

OPENING '

1.2.1 The radiation is determinéd by the velocity distribution at the
level of the opening. This distribution depends not only on the form and
dmensions of the opening, but also on the room and even the building. The
height of the exterior fagade is usually much smaller than the wavelength
under consideration, and the velocity distribution is different from the
one obta1ned for an opening in an infinite baffle. 1In the same way, the

1nfluence of the room walls due to a reflected wave which comes toward the

)

opening w1thyveloc1ty vectors which are different from those of the incident

wave will modif§'the velocity distribution. Since there is no way to deter-

mine these velocities in practice, known expressions can be used which have _

been established for the case of openings in an infinite baffle. They will

be more applicable, the farther the extremities of the facade or the walls

are away from the edgeslof~the opening.'

These expressions are calculated for the two following cases: uniform

velocity in the opening, and uniform radiation pressure over this opening.

The real case will be somewhere in between the two hypothetical cases.

1.2.2 Hypothesis of Uniform Velocity

For a rectangular piston in an infinite baffle, usually the following

expression for the radiation is assumed:

— 8 C(u -t _d__
e e Prad = It c\t( “‘-) r

S
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r is the distance between a moving point of the surface S and the point

where the pressure is being calculated. u is the velocity at a moving

point of the surface.

For a sinusoidal vibration we have:

[’ rad = | ?_‘E

The applied force is therefore:

[ Jwe“
;..Flrad"'L?radSi. E_‘E" 3

It is given in [1] ' 1

N |
with . B . - i
'} Arcts¥
{ n LQ%MZ An%jg oL Inel a6
A.Z = (" ') Wy + mig
‘ n G0 ° s
| 3

N
0
o
1
l ’ .
N
-
S
—
@
(%]
=
+
w
;—'5

tose™2 6

n
°

~iéﬁg£h of the opening; 1 = width of the opening; ¢ = L/I1.

k =w)c; L
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For usual rooms, we can restrict ourselves to A20 and B
Therefore we obtain the following force due to radiation:

[ gt st
Frog = 4 Hde o _£2 028
4 ‘ “l rad ;,2 (L+ dt I | dtt?

e s e n

. i
90 In general.

%{(4}%—)‘.03[(’“—%2)%-? \PJ 4+WL03[(4+$;-2)%+ —4\?-]
g ‘_g_(p(,“q)[A_,_%s _(4+$2)34J

+

pa
g

From the coefficients given in § 1.1 we find:

&) |

These coefficients result in an eigenfrequency of 8.9 Hz and a damping
of 3% for a room having the dimensions 4 x 4.15 x 2.5 and an opening having
the thickness 0.30 and the dimensions 1.30 x 1.30.

+
'

Conventional rooms and openings must have eigenfrequencies between 5
and 15 Hz.

1.2.3 Uniform Pressure Hypothesis

We can write:

13



A is the admlttance of the system. For wavelengths which are 1arge w1th

respect to ‘the dimensions of the opening, it is equal to the following for

the case of the sinusoidal wave [2]:

KK
2'ﬂ:ec " ew

et

w is the osc1llat10n ‘under coﬁsideratlon, and K is the conductivity. An

expression for it is given in [2]:

P( TE i.+ C
B Loa2(¥E+¥2)]

This expression is closer to reality, the farther away the opening is

(‘¢large Therefore it will certainly be valid here and in any case where
the velbcity field is planer almost everywhere. In particular, we can
assume that it is a good approximation in the case where the height of the

opening is equal to the height of the room. In practice we can write:

Prad pw's S | .
+ Ju)e I where, if the wave is not
j uds dTc K sinusoidal:
Y

du | C»_*_i:’-d‘s
Sdt ds o?‘rtc dtt

S
?’ .

We obtaln the coeff1c1ents from Equatlon (3)

(4"

14
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‘These two expressions differ' slightly from the expreésions (4). They

result in an eigenfrequency of 9.1 Hz1and a damping of 3.27 for the same

room and the same opening considered before.

1.3 RESPONSE TO A N WAVE

)

The N wave will be assumed as in@icated in Figure 1.2.

Aupe(U

Pe max

—.‘Pemax

~ Figure 1.2. Diagram of a "N" wave. ___

,timél;_a,_

15



1. 3 l Laplace Transform of the N Wave

If h(t) is a Heaviside step, the value of the pressure signature is

given by:

e

X A t R
I[h(t) l—a(t g]dta— Aed “h(b 'P+t) k(C)J

H A
! Pemax Z’l o T-%-%

SO . ﬁ“ (b_,m)_h(t-wjat

[+4

and its Laplace transform is:

]‘l §8<M)= M ] —47 :1_(/‘ - f)+ /1+>\ (e-(T-'C‘z)ﬁ;.'é]j |

li ?‘M“ ?emax , :P .T4 T‘z -G,

l! +__ ( (T-Q)r_e-Tr)

1

1.3.2 Response of the Room to a N Wave Having Normal Incidence

We have seen that the room with an opening behaves like a resonator
having the following characteristics: .
- eigenfrequency

;
1 w
‘ 0

SO - logarithmic decrement.

By setting Iy = - S u:w, the Laplace transform of the internal pressure .

pigt) is: L 2T

16
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The decomp051t10n into rational fractions gives:

,,?L[(’f-r.)’+-ua;‘} T
Ceprp o ¥rif o ¥-§8

in the form:

+
T _ '-P =T 'on .’.‘D-ro +j We
After transformation to the original plane of the Laplace transformation: /15
W gy Arnwd g
(’c) (Jc) o Krewe  dp |
’-F l+ W, ’f r, + W'L Ol |
A(T,'Wa)wo--?r.wo_ 6 » th . t '
+ e Sinw,
Lowr)t : (5)
(0 wi)
. '-'ZAY\O‘-UQZ— B(r‘W)Wa r" .
| + 2 e @ COJ‘WO{

AG) 1 (222 s )h(& e Ty

| ’ 1 [ T-Ty |
n (:j %, +'z4-)h(k-'7‘+?z & ( "‘2“”’ (T*Cz)
h A
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‘After an initial period equal to the total duration of the sonic boom,

the pressure signature at the interior of the room is a|damped sinusoid.’

During this initial period, the signature obtained is made up of several
oscillations. According to the hypotheses which have been made, there are
no longer any rapid increases of the overpressure (see Figures 1.7, 1.8,

1.9 and 1.10).

- - 1.3.3 Response of the Resonator to-a N Wave Having a Non-zero

Incidence

The problem is to evaluate .[ ? dS If the fagade containing the

opening is large compared with the Wavelength under consideration (infinite

baffle), we_can write (see Figure 1.3)

'?c(}‘;t) = ‘?e_((l,,tf"gifylg)

L

#'fa(olt)-—-’f—?ﬁ éj%(‘?/t)

and:

gt

'fcc\S = ? (o t)S_ ;(’. s_:_L_ d.]’i (O,‘t) o

|

e U SR U U S - - ~
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Figure 1.3. Effect of the angle of incidence i on the
penetration of the sonic boom.

e

Assuming that pe(O,t) is known, Equation (5) results in a value pio(t)’

and we obtain:

sini 9Pj, ()
T at

Py (0) =py (0) -3

Given the order of magnitude of the introduced coefficients, we will

.élﬁdst always have:

-~

p; () # by (O

19!
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7 ThlS makes it possible to assume that we can write the follow1ng over
the opening, assuming the fagade of an arbitrary building which has an

opening:

(x ’t) # P (O, t).

It is assumed that the opening is not very large (case of windows, doors).
1.4 INFLUENCE OF THE ELASTICITY OF THE ROOM WALLS

The study carried out previously for the penetration of a sonic boom
through an opening in a room assumes that the walls'of this room are rigid.
The presénce of a partition or a light ceiling can lead; to substantial
coupling between the modes of this panel and the modes of the room. The
eigenfrequencies of the room and of the panel are modified and the over-
pressure is obtained by the sum of the responses to each of these modes.
We will study the variatipn'of the eigenfrequencies and the dampings, in ~

order to determine the importance of thé influence of the wall elasticity.

’

a) Equation for the internal. pressure

If one of the walls of the room vibrates under the effect of the
modified internal pressure of the room, and if the field in the room can
still be assumed to be uniform, the overpressure in the room is given by

(see Figure 1.4)

— e a—— = . e =

dr__ g ds . &S 1ob Bn (1)

vV oJ v mogdrﬂ TCmn

(6)

This is valid for a panel having the dimensions a and b and simply supported.y/

is the generalized displacement (see § 2.1). The summation of 1 up to_ . f
4, (the senet <. 0

infinity does not make sense. The wavelength of the eigenfrequencies of the

panel becomes too small in order to provide a uniform field when m and n

20
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Figure 1.4. Influence of the elasticity of a wall of the room
on the internal overpressure._ _ ____

increase. However, the contribution of the higher frequency modes is

pi + - pe."

negli’é}ible in general, considering the duration of the sonic boom and usual

values for.a and b.

In addition to Equation (6), we have the equilibrium equation for the

resonator, in the form:

-

‘[J‘Yds—o{ é)lds‘ﬁj C‘U,_ds b’d’r__gd ?

dt s dt* | dt”

from which, by replacing - f ULdS by its value obtained from (6):
C_ s '

n:g_g’fds': ok — i ¢

o Hob o T B8 beb > qua (8)

1 STC m + n odd] Smn ST* 'm+n ‘odd] mn

21
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- Yo and Gajafe thetc1rcular frequency “and 1ogar1thm1c decrement of . the system \/18
'} The walls of the room.are,assumed.towbe.plgld. AAJ

U is given by the Duhamel integfal (zeéto initial conditioms):

| \f%,.(t)= o Te(f)e'F”w'“ )Smwm(t-f)c't
\ " T WW)Prh‘Umn ° ' e

for a simply supported plate The icircular frequency of the mode (m, n) equals

eaﬁals W The damplng is Bp, the thickness h, the volume mass is p

| It is subjected to the total pressure pt(t).

! We assume that the plate is only subjected to the pressure Ps» which

will give an order of magnitude of its influence.

If P = pl, the differential equatlon for P; is written as:

4 cot LA S dn
5£T‘ds ST Tw. olL

’ + GH ab Z ( olf’“ ﬁ% )(‘C) Ffw"'(:;;zm(b-z)dz

| Py

_—

For a sinusoidal pulsation wave w, the second term can be written as :

- ) NG T . 3
[ w' o S Ghab SN

! .
l/'r"
o

) &)_at JTW«? ?H‘-Th& m + ,ri_ e_dd‘_\mihl [(‘)‘W+'Frwnu1+w:n)

b) Determination of the Eigenfrequencies

Taklng the real part of expression (7), and setting it equal to zero, ,_“

we obtaln an equation in w which is the equatlon for the eigenoscillations.

Translator's Note: w, O om1tted from foreign text.
g

22



Retaining only terms for m = n = 1, the system has only 2° of freedom,

and the two eigenoscillations are the solution of the equation for w_:

i ele) g
Ve fp hT'S: - (w -w‘) +LIWP’> Wi

ue—

Wp

In general, the terms containing B can be ignored if the solution

obtained is not very close to Wyqe For this hypothesis, we obtain:
- . . N e a -

ﬁ # 4 _ .“ir. Glf o‘: of Wy :

e o TE" 5 2 2 :

ﬁ’ Wy = Wiy |

&

Since a is only sllghtly different from:

PPAXS . _ _Ghabpc”
,_Hwo’\/ » by setting /']“ Prh_ﬁ?vw“

(see § 2.2), we obtain: S SR

v
- er M O
1 Fyom -+"q “V:.<UJ; -cv“;)
or (w:-w,]‘xw:-w:)-wv]wﬁ: 0 |

n is very small for a panel or a light ceiling (order of 1%). Therefore

we find the two solutions:

This result shows that if Iwo‘- W is large with respect to B w

11|
( Bp is of-order- 1.01), which is the case as soon as w

11

0 IS'only*sllghtly o

different from Wyqs the eigenoscillation w, is essentially one of the

0

d
~

23



__ that:

eigenoscillations of the system.

It should be noted that the result w = W
_orl 711

violates the hyﬁézhgéis from which the anaiysis was started. From the point ,

is not valid, because it |

of view of the acoustic pressure, this is not important, because the pressure
radiated by the wall must be negligible, and this problem will be treated
in § 2.3. ‘

Finally, if W is only slightly different from Wyq> then w cannot be

very different from w because the previous calculation would result in 1

11°
a contradiction, and W, is therefore a solution of |

/].. : ’il- 6L{OLB ):O |
Pr <Wol n2f)r|q7t-h's-(2-rw44

or, essentially:

Thus we also obtain a solution “ﬁ:ﬁz UUJ, and the overpressure will
(SN (

respond only to the pulsation mode wol

c) Determination of the Damping for the Pulsation Mode W

We can determine whether the damping B'O for the mode Wo is changed
by the presence of a light panel. It is equal to the half of the imaginary

part of expression (7), in which we set w = Wy We obtain:

e s S pullhesd) e
o = r Clpd, 4
P Ic 2o hTYS W od] mn' [(w:n-w§)1+ b, for Wmn] ’

For 0 - # Wg» the terms containing Bp can be ignored. It follows

24
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. ' 2 2 o
.Pi‘ 2 . M F ) % s ...
CTam T am(wiewl) 48T (wtowd)

which is aimost equal to 60/2n for conventional values of Aﬂ (order of 10_2)4

If the pulsation W is extremel& close to w,, the imaginary part is

0 i
essentially given by: v

FL = 3o - M
I hmdipy i

and the damping can be considerably increased. This is particuiggly true,ﬁL*

;the less damped the wall is and the lower the circular frequency w (m and
mn

£n small).

d) Conclusion ' .

The system consisting of the room with an opening and a simply supported
and non-rigid wall “must in general be considered to consist of the two
subsystems coupled in a very loose way. The fact that the pressure is

independent of the passage of the sonic boom through the opening and is

independent of the wall vibration iresults| in a small pressure radiated by '
this wall compared with the internal exciting pressure. This makes it
possible to assume that:

1) | the results will be identical for a wall having boundary conditions

which are different from simple supports;

251 this wall is also excited along the outer wall of the room by

(%3

the sonic boom. We may also assume that there may be a very loose coupling.

-Thé case where an even lighter panel (window) is installed in the walls :J

will be treated in section 2.3.
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1.5 VERIFICATIONS OF THE REDUCED MODEL

a) Experimental Configuration

The linear acoustic equations (viscosity does not have. an effect) show
that it is possible to study the penetration of a sonic boom. in a room '
having an opening, by using a model at the scale 1/n subjected to a ballistic
detonation. The signature interval is divided by 1/n. The frequencies

obtained will be n times the real frequencies [6].

The results obtained with models at higher frequencies should be

transferrable to buildings having low frequencies.

Simulation of the Sonic Boom

The N wave was simulated by the explosion of goldbeaters skin balloons

4whjxﬁf@ere inflatedTby compressed air. —If these balloons are new, the

explosion will be quite uniform. The recording of the perturbation shows

a wave whose form is quite close to that of a N.

The diameter of the various balloons vary between 85 cm and 140 cm at
the moment of explosion. The signature interval obtained was within the
range of 1.5 to 3.5 ms. The overpressure of the crest 3 meters from the

balloon varied considerably (between 1 and 100 Pa in the free field).
This simulated N wave is in fact not perfect, because the rise times
are relatively long (sometimes one quarter of the total duration). On the

other hand, these rises are often not linear.

Model of the Room =

A room having the internal dimensions 8 cm x 16 cm x 16 cm was built =

‘puf of thick aluminum plates which were welded together. The fagade consisted’
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of a ﬁlétéisvmh”in thickness. It had a variable and rectangular opening.
This fagade was placed in a baffle, above which the exploding balloons
were mounted at a height of about 3 meters. Holes were provided for placing .

one quarter inch microphones (see Figure I.5) and were located in the center

of the three nonsymmetrical sides of the room.

Each side had an additional hole 2 cm from the level of the fagade.
A microphoné'was installed in the baffle in order to record the j
signature at the outside. It was placed sufficiently close to the model '
so that it gave the same overpressure as at the level of the opening. The
opening was closed and sufficiently far so that the radiation from this

opening was negligible.

Measurement Configuration

The signals recorded by the microphones were directed to an oscillo="""
scope after amplification. It was a memory type oscilloscope or had a
photographic appafatus. Thus, signatures of the perturbations are easily

obtained. The microphones used were the Briiel and Kjaer type 4135.

b) Measurement Results . ,

Uniformity of the Field in the Interior of the Room

The overpreséure obtained at the interior of the room varies according

to the different modes . The oscillations for the higher modes always have \

a very small amplitude compé;éafﬁith those of the first mode.

A

We found that, according to the first mode, the overpressure varies '
in phase with the placing of the microphones, beginning after a very short
" time interval. The amplitude is almost uniform, according to the first
mode, and decreases slightly when the opening is approached. The largest
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Fig. 1.5. ‘Experimental configuration for the verification on modelﬂ'ﬂ
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‘room dimension was equal to about 1/4 of the smallest wavelength observed iggj

the experiments carried out.

In the center«of~the~walls;”for~an—incidence'of”0°”(iﬂcidence is the
angle between the normal to the facade and the propagation direction), we
found that the overpressure was thé same at the center of the walls (except
at the beginning) for all the modes.% This result was not true for
an incidence of 60°. The curves recorded by the photographic apparatus 3

are shown in Figure 1.6.

Fundamental Eigenfrequency and damping

1) Measurements

The rectangular opening had a constant length of 8 cm and the i
width had a value of 2.4 and 8 cm. This opening was placed in two

positions:
- Position 1: the height of the fagade (8 cm) is completely pierced.

- Position 2: for widths equal to 2 and 4 cm, the opening is
arranged in such a way that the length is parallel to the longest edge of

'

the fa%ade.

The measured values of the resonance frequencies and the logarithmic
damping are given in the table below. As a comparison, we also show the
values calculated according to the two hypotheseé of uniform pressure and

velocity (see § 1.2).

The experimental determination of the resonance frequencies is quite

accurate and can be estimated to be less than 5%. This is not true for the

n

logarithmic §eg£ggggg, and its uncertainty is assumed to be 15%. 1In 4
practice, given -the accuracy of the experiment, the logarithm of- the ratio © 4
of two successive peaks is constant. We can assume that a more accurate -

measurement would shQY that the damping is not of a completely viscous nature.-
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Overpressures recorded at locations
A and B for the same incident waves
i = 0° (dimensions 8 x 2 of the

opening) .

Figure 1.6.

Overpressures recorded at location
B and C for the same incident wave
i = 0° (dimensions 8 x 2 of the
opening) . ’

I
!
|
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Uniformity of overpressures in the interior of the model.
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(Figure continued on next page)



1€

Overpressures recorded at locations A and B
for the same incident wave i = 60°
(dimensions 8 x 8 of the opening).

i

Figure 1.6 (continued)

Locations A, B and C of the
microphones:
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; \p ; ‘Calculated values | ; Calculated values| ‘;ifngeasured values JMeaéured'valuesh ;
. . foen P e ! e, . o - .
: (uniform VelOCItY?\:&pniform~pressure)p ,,,,,, ,,KP051t1°n 1) ,ﬂ (Position 2)
: £ 338 Hz PE, = 349 Hz f, = 350 He :
i1 : - :
: 0,50 § 0,55 $ =:0,29 :
: £ 282 Hz - A 291 Hz f. = 290 Hz "310 Hz
P2 N o
: 0,29 0,32 § = 0,18 0,17 :
S 241 Hz | £, = 246 Hz . fpoo=. 245 Hz 260 Hz
s 4 3 : ' .
Y 0,18 0,19 ;& = 0,15 10,18 :

|
|
i
1

f

= ratio of the length to the width of the opening

R .

= frequency of resonance

i

=l logarithmic decrement
i
!
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"~ "We can estimate thejéﬁﬁéfﬁﬁéniaiﬁunéértéinﬁiéé {ﬂhfﬁ and § at 5% and\
. e oo . e ~ P, o L =T . .
115%, .respectively. The frequency calculation seems to be correct, but l

the damping obtained by this calculation is in general twice the true damping,

The latter result (¢ = 4, positions 1 and 2) shows that it is important
whether or not the walls are very close (this is not ap,isq;gged_resulga_ﬁutA'
was obtained several times). In any éase, it is not the distance between
the edges of the opening and the walié, expressed as a fraction of the wave-
length of the resanant frequency, which is important, but'undoubtedly the
quotients of the length to the width of the opening and of the fagade which |
matter. This conclusion is in agreement with the principles set forth in
a study by Nesterov [7] concerned with a circular opening located in the i

center of a circular stream tube.

The experiments seem to show that when the walls approach.each other:

f real ~ diminishes .
f theoretical

and §. real-

also diminishes.
§ theoretical

In the case of an opening which occupies a large area in the fagade,
we could assume zero internal resistance to radiation, which would correspond
with a model already given (see J. van Bladel, [1]).

The tests described above will be completed by tests on the model,

which represents a building to be constructed at Istres. These tests will

result in additionaltinformatioﬂj

Oscillations of the Acoustic Pressure

For an incident wave which has a shape very close to the letter N, the

theoretical and experimental results agree very well when the true measured
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yblué‘sfriﬁe dambing is assumed in the calculations.

When the incident wave has numerous high frequency harmonics, the
results will still-agree; -but the analogy with a N wave is a delicate one.
The results of the calculations can change considerably for small variations

in the models of the N wave. ;

It was not possible to measure the difference between the incidences

i =0° and i = 60°.

The response frequency of the resonator does not seem to depend on the
amplitude of the inc¢ident wave, at least for the conditions in these '

experiments. . i

It was possible to observe a "dynamic amplification factor" of 2.5 to
3 for an incident wave which resembled a sinusoid more than a N wave, and :
-which could not be treated by means of a simple mathematical model. Tt

seemed that the resonance conditions were satisfied. !

Theoretical and experimental cur&es are shown in Figures 1.7, 1.8, 1.9

and 1.10. L

1.6 CONCLUSIONS o \

The study shows that the system consisting of a room and an opening
can be considered as a Helmholtz resonator for the studyAéf the penetration

of a sonic boom.

Consequently, we can expect to obtain the pressure signature in the

interior of a room which has the shapé of a'damped sinusoid. Its maximum willF

be equal to twice the overpressure of . the incident sonic boom crest. This [4

“overpressure is méasured on the fagade and is more than two times the over— 3

pressure of the crest measured on the ground. This is true when the v
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"signature interval of the sonic boom is approximately equal to the pefiod
corresponding to the eigenfrequency of the system consisting of the room

and the opening.

The hypotheses made _gq not make it possible to predict the rise time

(or the greatest slope) of the internal overpressure.

In order to obtain resonance with a classic supersonic aircraft
(fighter), an eigenfrequency of about 10 Hz is required, which is usually

foundw(see § 1.2). With a supersonic transport aircraft of the Concorde type,. |

'

an eigenfrequency of 3 Hz is required, which is only obtained for a very
small opening with respect to the room.  On the other hand, .a"double resonatoﬁ
(two rooms connected by an open door, and the sonic boom penetrates into
one of them through an opening) can have an eigenfrequency of this order.: j
In addition, the overpressures obtained can be considerably higher. The
study of the double resonator can be carried out in connection with the

preceding study. -
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R 2. VIBRATIONS OF WALLS IN A ROOM SUBJECT TO OVERPRESSURE

2.1 SUMMARY OF THE CLASSICAL THEORY OF VIBRATION OF A HOMOGENEOUS WALL

The following calculation treats the vibrations of a homogeneous

rectangular plate, having length a, width b and thickness h. It is assumed
smaller than the thickness)ﬁ Also it 1is assumed that there are no internal
prestresses. These simplifications make it possible to obtain the linear

relationships given below.

a) General Equation

The general differential equation can be written as

Jw  EW (w92 5‘»@‘)‘._; Pl t)
o /\z@ (4 o*) NGRS =2yt ¥t/ gh W

with: j w (x, ¥, t) = dynamic deflection
E = modulus of elasticity
v = Poisson coefficient
pp = volume mass
p (x, ¥y, t) = pressure applied to the wall.

In addition to this equation, boundary conditions at the edge of the

plate must be specified.

'

that the membrane stresses can be ignored (which is assumed for a deflection

If p (x, y, t) does not depend on w, which assumes negligible radiation,

we can find eigenmodes in the form:

% (:c,y) _smuu,t

which satisfy:
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1 99:"971 97" - :

and the boundary conditions at the edge of the wall.

If we make a decomposition according to the various eigenmodes, in

such a way that:

we obtain for each mode:

ﬂr”’”’frff(”

We can add a damping term Bp and we obtain:

. C‘r +-%Prwrc1r+ Wr“]r = -——-?r (-t) l (2)

i

pr(t) is given by:

(. ;};;,,;g-Lp,;z;;;;u;;d',f‘“*
?@C

j tv (y)ddy

and qr(t) can be determined by a Duhamel integral:

[ I e — - —_—

[—l-.

t.
el

) Frw,(t R

s\ wr(t Z)AC
9) We
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5o In order to obtain the stresses we have the relationship:

. G o _Eh  [ew )W)
| el 2(4&‘)[ ’97}

_ Eh [aw‘r\)aw} |
1 z(m)) TS

I
b) Case of a Simply Supported Wall

The boundary conditions for a real wall are not well defined in
. general. In order to simplify the calculations, frequently the case of ;

2

simple supports is considered

In this case:

L')m( ,y = s W‘E" Sin ”E‘/ i -

(a and b are the d1men31ons of the wall)

satisfy the imposed condltlons : We obtain:

| tfwt ot D \z2
e T (%5 'ﬂ)
| Av(d-v) | -
i':Y\mn (t) ib-f FC"/‘/’JC) sin MT& stk WO\“O\
3 S o .

1

i

(Z)The case of clamping is formally identical. The frequencies and eigen-
modes. .are given.by M. J. Crocker, for example "Multimode Response-of- Panels - -
to Normal and Traveling Sonic Booms", J.A.S.A., Vol. 42, No. 5, November, 1967
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'éﬁd”lk“ﬁ*6hi§'aépends on t:

TS
e T”“(t) —_TC—?-; T({) form+mn odd|

| ?mn ('t) | for m + nﬂe_rl\

We obtain the following for the stresses:

G ERT o ()2 ) (ny)am (9

* (4 ‘}1) m+ n odd]

T - ERTC* (__+\)__) q)m(x,,)clm(t)

2 (4 9) m+ n odd! ?*

(stresses are a maximum in the center).

For the acceleration we can assume:

= - Z Wmn q~n(t> mn (.x/\f) ,

m + n odd

c) Application to the Case Where the Pressure acting on the Wall

is a Wave Shaped like a N

Numerous studies have been made on the subject. The displacements,
stresses, accelerations are the sums of damped sinusoids ' (see Figure 2.1),

which is confirmed by experiment.

It is expedient to introduce the notion of the dynamic amplification
factor (D.A.F.)‘EE?Iﬁea\in general as the ratio of the maximum dynamic
displacement due Eb the sonic boom and the displacement which would be
obtained by a static load equal to the overpressure of the crest and

-uniformly distributed.
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Numerous curves of D.A.F. have been drawn, (see Flgure 2 2) for a
reduced structural element and the first mode alone, as well as by taking

into account all the modes.

The maximum dynamic amplification is on the order of 2.

2.2 CASE WHERE THE WALL IS LIMITED B& A CLOSED ROOM (ALONG ONE OF THE SIDES)
| : ¢
; The second term of the general d1fferent1al equatlon @B .
| P

X 1
‘ j

bt B (g T ) yem‘

. Cr k" /12(4-\)?) ! 9‘297

ll

can be con51dered as belng made up of two overpressures:

1) the incident overpressure Py (x, vy, t) {34

f ' 2) the overpressure radiated by the vibrations of the wall P, (x, vy, t),

to the exterior as well as to the interior of the room (see Figure 2.4).

In a freeiii%??}] this ﬂverpressure P, (x, vy, t) is negligib}k compared {
with the overpressure P (x, ¥, t). On the other hand,_if there is a room
adjacent to the plate, the quantity P (x, vy, t) will increase because
of the reflections on the walls of this room of the radiated wave. Conse~
quently, it is appropriate to evaluate the influence of a room adjacent to

the panel, because this situation always exists in practice.

We will expect the following::

,{l[there will be possibly a detectable modification of the vibration
amplitudes of the plate

L e e e S
) P, (x, v, t) depends on the displacement w (x, v, t), for any

change in the elgenmodes and the e1genfrequenc1es of the plate.
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We will first deal with the case of a closed room, héving rigid and non=

absorbing walls adjacent to the plate, and we will discuss studies which

have already been carried out.

a) Radiation of the Panel 7 L5

4 == -~ “The simplest hypothesis is to assume that the overpressure in the room
ig uniform. Craggs [1] considered one reasonable limit of this hypothesis,
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which is that the first in situ frequency of the panel under consideration

is smaller than one half of the fundamental frequency f, of the room,

0
which is considered as a tube open at one end (the one containing the panel)

and closed at the other end: —This in effect assumes that the panel covers
all of one wall of the room. Assuming that the occupied area is less than
one half of the surface of the wall of the room, the transverse modes of

the room must contribute to the uniformity of the pressure field. 'Assumhingm

that the first frequency of the panel is less than the frequency fOP a
finer analysis can be carried out assuming an expression of the fsilowing

form for the radiated pressure:

/\(t)tosuléf , for an incident sinuéoidal wave with pulsation w. The

abscissa Z = 0 corresponds to the wall opposite the panel [1].

This hypothesis corresponds to a piéhédwave in the room. It assumes in

particular that the panel occupies a large part of one of the walls of the

- room. For this configﬁration, Craggs [1] was able to theoretically confirm

this hypothesis using the method of finite elements. He also found that,
if primarily the first frequency of the panel is heard on the floor of the
room, the higher frequencies will become more and more pérceptible as one

approaches the panel carrying out vibratioms.

Besides the panel dimensions compared with the dimensions of the wall

containing the panel, a second restriction to jthe planar wave -model is .

that the depth d of the cavity cannot be too small compared with the largest
dimension L of the pamel. For d < L/2, the transverse modes will become

more important [3].

Assuming uniformity, the interior overpressure has the following value,

using the notation of §§ 1.1 and 2.1

Tl(t) :J’———'C sh | wd$S (see Figure 2.5)
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Figure 2.5. Diagram for the
calculation of the interior
overpressure.

1

‘and for a simply supported panel . this

results in:

_pdeb ST qmly)

TCV m_;!-no_(ld‘ mn

The summation over all odd and
whole m and n does not make sense,
because for very high frequencies, the
pressure can no longer be uniform.

However, the duration of a ballistic

detonation is such that it will prlmarlly

excite the (1, 1) mode, and the contrl—f

bution of the other modes (m, n) to

R
the radiated pressure become negligib}e when m and n are increased.

b)

Vibration of a Simply Supported Panel Adjacent to the Room St

If we make a‘EEEompositioﬁ_accdfaing'to the base vectors

Bors

n ﬁfzé sin EIEY | .. R . \
>

a

the generalized displacement is given by Equation (3):

c{m\ *)‘ T—ff}\wmmn

P, is the total overpressure.

plate into a free field, so that:

50
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We will ignore the pressure radiated by the

L
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o It should be noted that this radiated pressure in the free field can

be included in Bp , which is measured and which contains not only the

purely mechanical damplng due to the structure of the plate and its support

‘ - rom n o —— e

conditions.

Under these conditions,-assuming uniform pressure:

qng£) = _16 : ?(Z) ﬁ’wm %mwm(k ?:)dt

2
‘er ﬁ,‘me mn /o

'; _ _GL(O«HL f)cl E i ﬂr.rf ) Ffwm(é..nf)wm(f'_z)dc
| b VT e o |

In.carrying'out a Laplace transformation of the two terms, we obtain: :

(zero initial conditions)

Q. = 36 _F(3) _
(r) T[Prkrvm [(F+FTW“")+WM"J

_ GLIaLfc" Z "@r.s (4)

TV T v [ fps ram) ke ]

In order to have an order of magnitude, we can limit ourselves to

1, and we obtain:

8
]
=
]
H
|
»
]

W o -+ GL}QL C Q/M = 1—’?°<'f)
| (’f P” ) prhT T g

ThlS expression shows that the room behaves like an additional sprlng,

and that the in situ frequency of the plate is increased. The ratio:
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determines the importance of the room influence.

The first eigenfrequency of the plate is then given by:
2 &
M = '¢44 (4‘”‘7)"

fll is the eigenfrequency in the free field. - |
|
The importance of:ﬁw makes it possible to predict the largest or the

smallest influence of the closed room.

- For a conventional wall (made of blaster) making up one side of a “1
room having the usual dimensions (4 x 4 x 2.5 m), ﬁ}is negligible and there

is hardly any coupling. i

- For an average window (1.30 x 1.30), consisting of two cross pieces
having the usual thicknesses (1.95 mm), in the same room as before, n is |
also negligible and there should be no coupling. It should be remarked ‘
that the first frequency of the window approaches the fundamental frequency
fo of the room, agd the hypothesis of uniform pressure wi;l be subject to

a certain error.

- For a large bay having glass panes with the dimensions 4 x 2.5 (thick-

ness§ mm) on a room having a depth of 4 meters]n [is no longer negligible

(- 0.

The preceding calculation must be improved if-ﬁqbecomes too large. One

=~

method consists of summlng m and r from 1 to 2R + 1 in the Equations ( (4), _
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'and suming n and g-from 1 to 25 + 1. Then the obtained system of equations
is solved. Pretlove and Craggs showed that a good approximation is found 3
[5] if we restrict ourselves to the two first odd modes for a rectangular

plate (but not for a square one). In particular, the shape of these modes

is obtained with sufficient accuracy.

This calculation assumes that the hypothesis of uniform pressure is | 38
satisfied, which cannot always be realized. The calculations of| the
radiated pressure; carried out up to the present, assumeAthat the first
frequency of the panels does not exceed the fundamental frequency fo of
the room (which is usually the case). In the opposite case, the latter

acts like a supplementary air mass [3] and [1].

Using the hypothesis of a plane wave in the interior of the room and

for an incident sinusoidal wave with circular frequency w, we then find thg.

1 ‘ratio ﬁ]fgaﬁal‘tO-TI]fT\

eu b 'Wa
s @rhV c

which shows that the volume of the room behaves like a component with

negativé rigidity (which amounts to an additional mass).

Even though the plane wave hypothesis is not very realiétic, a_QEEEE}SEJ
study of the response of the system consisting of the panel and the cavity
can be made using. the method of finite elements [l1]. The results obtained

for the eigenfrequencies are shown in Figure 2.6.

The modification of the eigenmodes and the eigenfrequencies<E§kes_iﬂ

possible to predict the response of the system. The amplitude of displace-

L

ment of the plate is reduced, approximately by the ratio 1 +:aWifthis not
too large.. The amplitude of the stresses vary essentially -like that of- the .
displacements, except when ;]is too large [1]. The overpressure in the

interior of the room increases w1th nL on the other hand. ,
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‘Figuré 2.6. ~Variation of the eigenfrequencies of a Si’mﬁiy'éﬁbﬁdr—f.edﬂ o
plate with n and the ratio of length to width ¢ (according to [1]).
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" The ﬁfeviaaé calculations were carried out in the case of a simply
supported plate. The case of a clamped plate can be treated in the same

way. The coupling is smaller. The results of eigenfrequencies are shown

in Figure 2.7 according—to[1]:

2.3 CASE WHERE THE WALL IS LIMITED B& AN OPEN ROOM
|
The panel can occupy a part of or the entire wall of a room having an
opening (see Figuze 2.8) and the response of this panel can depend greatly

on this situation.

The closeness of the room brings about a coupling between the radiated

pressure and the vibrations of the panel, just as in § 2.2.

This problem was treated in § 1.4 for a simply supported plate.

If the coupling becomes important, one cannot take the dampings into
account, so that the equation for the'eigenpulsations is written as":(see

§ 1.4):

" o : Bd‘-z IR S
'—('»—;_"’,Z._ 6“3 ,IW 11 2 LR = O
wi m+ ,T!__deq\ ?fvh'ﬂf 5 L (Wnn - W) o :

05

where, since & *E

/I-;-é’-t—q%g-z 4 = O

ntnodd] mh(wy,-w?

n was defined in § 2.2.

a) Solving for Eigenfrequencies

et e der  — e cies e e ame s

If we only retain the first mode of the panel, the equation is written
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f1 with closed .room( ‘ . b
\.f1 without room __/ :

)
‘ﬁfl2 Aw_iﬁthicv];osedr ;Jgﬁﬁ 2
1f2 without room

e

Figure 2.7.. Variation of the eigenfrequencies of a simply-supported- - .
plate with n and the ratio of length to width ¢ (according to [1]).
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If we also take the second mode of the panel Wy3 into account, the

equation is written as:

2 v % o 1
4 w - /yle w + w = 0
! 2)
W, o Wo‘_ WMV 39 (Waa""’ .

In order to see the importance of the coupling, we can consider the casée

Wi, = w,, which ‘gi'\}es:'l ‘ . g

11 0

7

- retaining only the first mode of the panel, and by setting X = '(ﬁi.
Wo™ |

Xt X(Z+~))+/.1:O \

- retaining the two first modes-of- ‘the panel, and by setting >\ _U;)iL ‘ 40
WM .

._ X3+ 7(7'(2+/\+’\E°iq) (-ZA-*’D ﬁ-+~>\)*>‘

Figure 2.9 shows these curves for various values_ X. They show that
they practically all overlap in the vicinity of X = 1. The branches of

the curves X < 1 also all practically overlap.
¢
9+ Y

The transition from A to ¢ is made rusing relatlonshlp} >\ (m{

The comparison of Figures 2.7 and 2.10 shows that the coup11ng ‘becomes greater

in the case of the open room considered, as compared with the case where the

room is closed. This result was confirmed in [1].

. The modes (1.3) are not affected in this way by the coupling for the
calculatlon condltlons, except for very large elongatlons ¢ of ‘the plate o

| (small A).
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§|§ : Fig. 2.9. Va}“l__atlon of the eigenpulsations wr ‘ - R '~ :
- ™ ' , ' of a simply supported plate as al
Y R A "function of m and >\. - -

{
(The room hav;é an openlng has a first resonance frequency equal to the flrst S
zé elgenfrequency of the plate) 5-97



b) Overpressure of the System Subjected to a Sonic Boom havx4g

the Signature pe(El

Séveral cases can be considered.]

""1)| The sonic boom impinges only on the opening. This is a case of a

sonic boom which penetrates throughznﬂopen window into a room, one wall of
which consists of a light panel, and which is only subJected to the internal
pressure in|this room. Using Laplace transforms, Py -is given by the follow1ng

expression, where the damping has not been taken into account:

acs: v (’hwz ‘gé . )] =%

In the case mentioned, in general we have: Wy S Wyq f_wlj. Since n

1

'

is small in general, we can restrict ourselves to considering only the two ‘

"modes Wy and wO.

If we call QO and Qll the two first modes of the ensemble "W&ll?Foom”,

we obtain:

or —— e e I - . .

2 2 1 + n 2
"‘Qa /-,D*ﬁll ’-f"’ﬂo

The oscillations at the frequency Q. are carried out with an amplitude

0
proportional to

e .,..AWOQ ()l:.—ﬁal (/!- _ﬂ“- ” > I,
JT? 3 ‘J>: - JLo le ’
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and the ones at the frequency w, are carried out at an aﬁplitude proportional

0
to 1. The oscillations at the frequency Qll are proportional to.

| e - b
& l.‘ - _Q

11
pressure that can be obtained with a sonic boom must diminish with n, if
Qll is sufficiently different from Qo. This case _ﬂ. 11# .Q.O'Xcorresponds

1

to a much stronger damping (see § 1.4). The maximum internal overpressure |
' | |

|

f Since we have @ > wygs We can assume that the maximum internal over-

. must always diminish with n. (For n # 0, this maximum internal overpressure
is equal to about twice the overpressure of the crest of the incident

gsonic boom, according to the first part of this report.)

‘jZH The sonic boom impinges only on the panel

]i This is the case of a sonic boom which propagates through a closed ]
' window into a room having an open door and whlch communicates with a very ‘
large room not subjected to the sonic boom. The equation for 1 is then

' written as follows, ignoring the damping terms and using the Laplace ‘

transforms .

: o | e . «u‘d-“.,_ S . ,
!?L[/fﬁ‘u—%-i-m;’:‘? <?+wn 1—W>+>] |
? %mﬁi 1 S s AT

o mwal» r+w.. 3(P+w43> ]

for a uniform pressure pe(t) over the panel.

{13

If we only retain the modes wg and dii;?#éjdbféiﬁgf

S _'(ﬁfﬁu)(r*ﬂo)




or

- -
' Jlu j) ’?2412“ ‘7 +

Depending on the values of Qll’ QO and the signature interval, we can
obtain different combinations of sinusoids, which must agree with the results
of [1].

The expression for Pi above shows that the overpressure in the interior '

will consist of oscillations at the coupling frequency of the resonator and
of oscillations of the coupling frequency of the panel. The amplitude of '
these .two types of oscillations will have the same order of magnitude.
g -
In addition, q _E%L——é% can become very large, if 9, is not t667‘1”

far separated from Q (which assumes that n is not too large). Under these

conditions, a cons1derab1e internal overpressure p; can be expected, because
the overpressure radiated by the window is essentially in resonance with

the Helholtz| resonator.

A more complete study of the internal overpressure should be carried

out, taking the dampings into account.

T§Y] The sonic boom impinges on the panei and the opening |

This is the case of a sonic boom which penetrates into a closed room
\
through an open window and a closed window. These two openings are

sufficiently far away from each other so that there will be no interaction.

The solution for P is obtained by addlng the two prev1ous solutlons.

'{VFt _ 4 CU:'(Jlu"CWI) ﬂ‘”u . OUg<LUn 52 ) ﬂ‘” ih 3
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If the coupllng n is 1arge enough and 1f the two modes QO and Qll\

are hlghly exc1ted, the addltlon of these two pressures obtained in the twoAAJ

flrst cases will result in an amplification of the internal overpressure
which is larger-—-than-is-obtained withodt coupling. Craggs [1] theoretlcally
obtained an amplification of approximately 2.7 (without damping) in a

particular case which was not selected in advance.

c¢) Response of the Panel ' ‘ 43

We will only retain the pulsations wll and Wys for the same case as

for the calculation of the overpressufe.

ij The sonic boom impinges only on the opening

From § 1.4, we find:

(T +wu)Q4f = Tt ,h

q.
‘ t Wo e
o= odeie Bog . 2t *
o VT wp /1+-1E-7‘ : ’-Y+w° '

which results in:

@ _ ACw,t Fe
T Pr (’F + ! ) (’F + Jdig
If there were no coupling, the internal pressure would be given by
b o lwh
o - : 5
fPt'f Wo _ i

and the displdcement would be: o T 5




QM - Po» : ‘:  4 C%z | “Fe
Tt?r (,Fz,_,_wna)w - ’f+w")(f+%)

Everything behaves as though the panel were responding to an internal

U% ' jl P |

pressure equal to Jli

, the maximum of which is greater than the

¥

-——_t"
?«..ﬂ

. value of P calculated without coupling.

It is difficult to predict a priori if the coupling increases or does
" not increase the response of the panel. In any case, with a very loose
coupling, we can easily predict a dynamic amplification factor in this case
equal to five times the dynamic amplification factor which would be obtained
considering the panel subjected to a sonic boom (the dynamic amplification
factor of thepanel subjected to a damped sinusoid is two to three, and the

maximum internal overpressure equals one to two times the overpressure of

.the crest of the sonic boom). G e

fé) The sonic boom impinges only on the panel

According to § 1.4 the equations are written as:

+wl )QM _. Q_

(5" pr e T

Pﬁ = - Lfab (Jc?' @44
o TC_z\(wf’ 4+ %

from which:

- 2o (i) T

T T R ) |
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The coupling is important for a:light panel, which must have a low

frequency, and we can assume that Qli 5_90, which leads to the first case

of b), by inverting the roles of @,  and Q5. .. .

o = TR Nrowt . wf-ﬂ.'i P, ;
M T T T At 1 Nt ' '
” T (L-00) [ e e

- «

In the same way, the displacement of the panel consists of oscillations

Q-Q-o.

, (the oscillations at the frequencyiﬁﬁ_
t
i

2 i

[<]

at the frequencies == | and 32”
it

vanish for a negligible amount of coupling).

a,

The oscillations at the frequency must oppose the oscillations at

the frequency él;j in general, and the displacements obtained must be smaller

2T
than when there is coupling.

fgi The sonic boom impinges on the opening and the panel

The displacement is obtained by adding the two preceding displacements: '

Pp = ._ 16 A _.ﬂ.: A
Toph (Q.f-fz:_) - f‘fﬂﬁ | ff*n: )

The panel (assumed to have the eigenpulsation Qll),-w§§£§*have a response

equal to the following, if it were not subjected to the sonic boom:

—¢ _. - _,,;___AC Pt
Ao — fclﬂ’h (f’2+ﬁ‘%) 5

‘The difference Q;; - Q10 equals: R



. P A
O = g (D )

This expression shows that the displacement due to the internal pressure
is increased. This displacement can equal five times the static displacement’
which would result from a uniform pressure in the room, equal to the maximum

value of P,

The displacement of the panel must therefore become quite large and
considérably exceed the displacement'which is predicted by considering the

hypothesis of a plate subjected to a ballistic detonation.

This amplification will be attenuated as the coupling increases. The

results obtained are not contrary to those obtained by Craggs [1].
+ 2 .4 CONCLUSIONS

a) Results

The classical theory of vibrations of a homogeneous plate has been
reviewed. It makes it possible to predict the maximum responses of a plate
subjected to a sonic boom for the simple caser, using the curves of the

dynamic amplification factor.

This theory 1Ed to a simplified approach to the influénce of rooms
adjacent to the wall, taking into account the existing couplings. Using the
hypotheses made, it seemed that a ballistic detonation penetrating into a
room through an opening (window or open door) and through a light panel can
bring about large overpressures and displacements. A large bay containing
glass panels (showcase) installed in an opening will result in an internal

- overpressure "the maximum amplitude ofowhich can be equal to 2 to 3 times

the overpressure of the incident crests. This effect is even greater than
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“in the case of a partition. This maximum amplitude will be only slightly

damped, which will create a‘péycholoéi&aﬂ stress. On the other hand, -the

displacements of this bay to the outside can considerably exceed the omnes
which are predicted if wé considér the bay only subjected to the sonic

boom (more than 5 times using the hypotheses made).

b) Criticism

TI)’l When the displacements of a panel become largé (larger than the
thickness), it is necessary to take the membrane stresses into account in
the vibration equation of the plate. These stresses can considerably

reduce the displacements (see [6]).

}
)
The study of the vibration of glass plates in the vicinity of the

rupture point cannot be made using the adépted hypotheses.

'2)| Numerous panels currently irn Use in construction are not homo-
1

geneous. The fact that several materials are used can lead to additiomal

stresses.

3)| The aging of the buildings produced additional settling and

additional stresses, which are translated into internal prestresses.

These should be taken into account in a study of the vibrations and

stresses in a plate.
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